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Learning Objectives 

• Learning Objectives (LO) 
– LO1: Understand the concept of spatial data mining 

(SDM) 
• Describe the concepts of patterns and SDM 
• Describe the motivation for SDM  

– LO2 : Learn about patterns explored by SDM 
– LO3: Learn about techniques to find spatial patterns  

• Focus on concepts not procedures! 
• Mapping Sections to learning objectives 

– LO1 - 7.1 
– LO2 -  7.2.4 
– LO3 - 7.3 - 7.6 

 



Examples of Spatial Patterns 

• Historic Examples (section 7.1.5, pp. 186) 
– 1855 Asiatic Cholera in London : A water pump identified as the 

source 
– Fluoride and healthy gums near Colorado river 
– Theory of  Gondwanaland - continents fit like pieces of a jigsaw 

puzlle 
• Modern Examples 

– Cancer clusters to investigate environment health hazards 
– Crime hotspots for planning police patrol routes 
– Bald eagles nest on tall trees near open water 
– Nile virus spreading from north east USA to south and west 
– Unusual warming of Pacific ocean (El Nino) affects weather in 

USA 
 



What is a Spatial Pattern ? 

•What is not a pattern? 

• Random, haphazard, chance, stray, accidental, unexpected 

• Without definite direction, trend, rule, method, design, aim, purpose  

• Accidental - without design, outside regular course of things 

• Casual - absence of pre-arrangement, relatively unimportant 

• Fortuitous - What occurs without known cause 

•What is a Pattern? 

• A frequent arrangement, configuration, composition, regularity 

• A rule, law, method, design, description 

• A major direction, trend, prediction 

• A significant surface irregularity or unevenness 



What is Spatial Data Mining? 

 

• Metaphors  
– Mining nuggets of information embedded in large 

databases 
• Nuggets = interesting, useful, unexpected spatial patterns 
• Mining = looking for nuggets 

– Needle in a haystack 

• Defining Spatial Data Mining 
– Search for spatial patterns 
– Non-trivial search - as “automated” as possible—

reduce human effort  
– Interesting, useful and unexpected spatial pattern  

 



What is Spatial Data Mining? - 2 

• Non-trivial search for interesting and unexpected spatial pattern  
• Non-trivial Search 

– Large (e.g. exponential) search space of plausible hypothesis 
– Example - Figure 7.2, pp. 186 
– Ex. Asiatic cholera : causes: water, food, air, insects, …; water delivery 

mechanisms - numerous pumps, rivers, ponds, wells, pipes, ... 

• Interesting 
– Useful in certain application domain 
– Ex. Shutting off identified Water pump => saved human life 

• Unexpected 
– Pattern is not common knowledge  
– May provide a new understanding of world 
– Ex. Water pump - Cholera connection lead to the “germ” theory 

 



What is NOT Spatial Data Mining? 

• Simple Querying of Spatial Data  
– Find neighbors of Canada given names and boundaries of all countries 
– Find shortest path from Boston to Houston in a freeway map 
– Search space is not large (not exponential) 

• Testing a hypothesis via a primary data analysis 
– Ex. Female chimpanzee territories are smaller than male territories 
– Search space is not large ! 
– SDM: secondary data analysis to generate multiple plausible hypotheses 

• Uninteresting or obvious patterns in spatial data  
– Heavy rainfall in Minneapolis is correlated with heavy rainfall in St. Paul, 

Given that the two cities are 10 miles apart.  
– Common knowledge: Nearby places have similar rainfall 

• Mining of non-spatial data 
– Diaper sales and beer sales are correlated in evenings 
– GPS product buyers are of 3 kinds:  

• outdoors enthusiasts, farmers, technology enthusiasts 

 



Why Learn about Spatial Data Mining? 

• Two basic reasons for new work 
– Consideration of use in certain application domains 
– Provide fundamental new understanding 

 

• Application domains 
– Scale up secondary spatial (statistical) analysis to very large datasets  

• Describe/explain locations of human settlements in last 5000 years 
• Find cancer clusters to locate hazardous environments  
• Prepare land-use maps from satellite imagery 
• Predict habitat suitable for endangered species  

– Find new spatial patterns 
• Find groups of co-located geographic features 

 

• Exercise. Name 2 application domains not listed above. 
 



Why Learn about Spatial Data Mining? 
- 2 

• New understanding of geographic processes for Critical questions 
– Ex. How is the health of planet Earth?  
– Ex. Characterize effects of human activity on environment and ecology 
– Ex. Predict effect of El Nino on weather, and economy 

• Traditional approach: manually generate and test hypothesis  
– But, spatial data is growing too fast to analyze manually 

• Satellite imagery, GPS tracks, sensors on highways,  … 

– Number of possible geographic hypothesis too large to explore manually 
• Large number of geographic features and locations  
• Number of interacting subsets of features grow exponentially 
• Ex. Find tele connections between weather events across ocean and land areas 

• SDM may reduce the set of plausible hypothesis 
– Identify hypothesis supported by the data 
– For further exploration using traditional statistical methods 

 



Spatial Data Mining: Actors 

• Domain Expert -   
– Identifies SDM goals, spatial dataset,  
– Describe domain knowledge, e.g. well-known patterns, e.g. 

correlates 
– Validation of new patterns 

• Data Mining Analyst 
– Helps identify pattern families, SDM techniques to be used 
– Explain the SDM outputs to Domain Expert 

• Joint effort 
– Feature selection 
– Selection of patterns for further exploration 

 
 
 



The Data Mining Process 

Fig. 7.1, pp. 184 



Choice of Methods 

• 2 Approaches to mining Spatial Data 
– 1. Pick spatial features; use classical DM methods 

– 2. Use novel spatial data mining techniques  

• Possible Approach: 
– Define the problem: capture special needs 

– Explore data using maps, other visualization 

– Try reusing classical DM methods  

– If classical DM perform poorly, try new methods 

– Evaluate chosen methods rigorously 

– Performance tuning as needed 

 



Learning Objectives 

• Learning Objectives (LO) 
– LO1: Understand the concept of spatial data mining 

(SDM) 
– LO2 : Learn about patterns explored by SDM 

• Recognize common spatial pattern families 
• Understand unique properties of spatial data and patterns 

– LO3: Learn about techniques to find spatial patterns  
• Focus on concepts not procedures! 
• Mapping Sections to learning objectives 

– LO1 - 7.1 
– LO2 -  7.2.4 
– LO3 - 7.3 - 7.6 

 



7.2.4  Families of SDM Patterns 

• Common families of spatial patterns 

• Location Prediction: Where will a phenomenon occur ? 

• Spatial Interaction:  Which subsets of spatial phenomena interact? 

• Hot spots: Which locations are unusual ? 

•Note:  

• Other families of spatial patterns may be defined 

• SDM is a growing field, which should accommodate new pattern families 

 



7.2.4 Location Prediction 

•Question addressed 

•Where will a phenomenon occur? 

•Which spatial events are predictable? 

•How can a spatial events be predicted from other spatial events? 

•Equations, rules, other methods, 

 

•Examples: 

•Where will an endangered bird nest ? 

•Which areas are prone to fire given maps of vegetation, draught, etc.? 

•What should be recommended to a traveler in a given location? 

 

•Exercise: 

•List two prediction patterns. 



7.2.4 Spatial Interactions 
•Question addressed 

•Which spatial events are related to each other? 

•Which spatial phenomena depend on other phenomenon? 

•Examples: 

 

 

 

 

 

 

 

 

•Exercise: List two interaction patterns. 



7.2.4 Hot spots 

•Question addressed 

•Is a phenomenon spatially clustered? 

•Which spatial entities or clusters are unusual? 

•Which spatial entities share common characteristics? 

 

•Examples: 

•Cancer clusters [CDC] to launch investigations 

•Crime hot spots to plan police patrols 

 

•Defining unusual 

•Comparison group:  

•neighborhood  

•entire population  

•Significance: probability of being unusual is high 

 



7.2.4  Categorizing Families of SDM 
Patterns 

•  Recall spatial data model concepts from Chapter 2 

• Entities - Categories of distinct, identifiable, relevant things 

• Attribute: Properties, features, or characteristics of entities 

• Instance of an entity - individual occurrence of entities 

•Relationship: interactions or connection among entities, e.g. neighbor 

• Degree - number of participating entities  

• Cardinality - number of instance of an entity in an instance of relationship 

• Self-referencing - interaction among instance of a single entity 

•Instance of a relationship - individual occurrence of relationships 

 

• Pattern families (PF) in entity relationship models 

• Relationships among entities,  e.g. neighbor 

• Value-based interactions among attributes,  

•e.g. Value of Student.age is determined by Student.date-of-birth 



7.2.4  Families of SDM Patterns 
• Common families of spatial patterns 

• Location Prediction:  

•Determination of value of a special attribute of an entity is by values of other 
attributes of the same entity 

• Spatial Interaction:  

• N-ry interaction among subsets of entities 

• N-ry interactions among categorical attributes of an entity 

• Hot spots: self-referencing interaction among instances of an entity 

•... 

•Note:  

• Other families of spatial patterns may be defined 

• SDM is a growing field, which should accommodate new pattern families 

 



Unique Properties of Spatial Patterns 

• Items in a traditional data are independent of each other,  
– whereas properties of locations in a map are often “auto-

correlated”. 
• Traditional data deals with simple domains, e.g. numbers 

and symbols,  
– whereas spatial data types are complex 

• Items in traditional data describe discrete objects  
– whereas spatial data is continuous 

• First law of  geography [Tobler]: 
–  Everything is related to everything, but nearby things are more 

related than distant things. 
– People with similar backgrounds tend to live in the same area 
– Economies of nearby regions tend to be similar 
– Changes in temperature occur gradually over space(and time) 

 



Example: Clusterng and Auto-
correlation  • Note clustering of nest sites and smooth variation of spatial attributes 

•  (Figure 7.3, pp. 188 includes maps of two other attributes) 

• Also see Fig. 7.4 (pp. 189) for distributions with no autocorrelation 



Moran’s I: A measure of spatial 
autocorrelation 

• Given                  sampled over n locations. 
Moran I is defined as  

 

 

 

Where  

 

and W is a normalized contiguity matrix. 
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Fig. 7.5, pp. 190 



Moran I - example 

•Pixel value set in (b) and (c ) are same Moran I is different. 

•Q? Which dataset between (b) and (c )  has higher spatial autocorrelation?  

Figure 7.5, pp. 190 



Basic of Probability Calculus 

• Given a set of events     , the probability P is a function from into 
[0,1] which satisfies the following two  axioms 

–       and  
–  If A and B are mutually exclusive events then P(AB) = P(A)P(B) 

 
• Conditional Probability: 

– Given that an event B has occurred the conditional probability that 
event A will occur is P(A|B). A basic rule is  

– P(AB) = P(A|B)P(B) = P(B|A)P(A) 

 
• Baye’s rule:  allows inversions of probabilities 

 
• Well known regression equation  

– allows derivation of linear models 
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Learning Objectives 

• Learning Objectives (LO) 
– LO1: Understand the concept of spatial data mining (SDM) 
– LO2 : Learn about patterns explored by SDM 
– LO3: Learn about techniques to find spatial patterns  

• Mapping SDM pattern families to techniques 
• classification techniques 
• Association Rule techniques 
• Clustering techniques 
• Outlier Detection techniques 

• Focus on concepts not procedures! 
• Mapping Sections to learning objectives 

– LO1 - 7.1 
– LO2 -  7.2.4 
– LO3 - 7.3 - 7.6 

 



Mapping Techniques to Spatial Pattern 
Families 

• Overview  

• There are many techniques to find a spatial pattern familiy 

• Choice of technique depends on feature selection, spatial data, etc. 

•Spatial pattern families vs. Techniques 

• Location Prediction: Classification, function determination 

• Interaction : Correlation, Association, Colocations 

• Hot spots: Clustering, Outlier Detection  

• We discuss these techniques now 

•With emphasis on spatial problems 

•Even though these techniques apply to non-spatial datasets too 

 



Given: 

1. Spatial Framework  

2. Explanatory functions: 

3. A dependent class: 

4. A family       of function 
mappings: 

      

Find: Classification model:  

 

Objective:maximize 

classification_accuracy  

 

Constraints:  

Spatial Autocorrelation exists 
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Nest locations Distance to open water 

Vegetation durability Water depth 

Location Prediction as a classification problem 

Color version of Fig. 7.3, pp. 188 



Techniques  for Location Prediction 

• Classical method:  
– logistic regression, decision trees, bayesian classifier 
– assumes learning samples are independent of each 

other 
– Spatial auto-correlation violates this assumption! 
– Q? What will a map look like where the properties of 

a pixel was independent of the properties of other 
pixels? (see below - Fig. 7.4, pp. 189) 

• New spatial methods 
– Spatial auto-regression (SAR),  
– Markov random field  

• bayesian classifier 

 
 
 
 



• Spatial Autoregression Model (SAR) 

• y = Wy + X +  

• W models neighborhood relationships 

•  models strength of spatial dependencies 

•  error vector 

• Solutions 

•  and  - can be estimated using ML or Bayesian stat. 

• e.g., spatial econometrics package uses Bayesian approach 
using sampling-based Markov Chain Monte Carlo (MCMC) 
method. 

• Likelihood-based estimation requires O(n3) ops. 

• Other alternatives – divide and conquer, sparse matrix, LU 
decomposition, etc. 

 
 
 

Spatial AutoRegression (SAR) 



Model Evaluation 

• Confusion matrix M for 2 class problems 

– 2 Rows: actual nest (True), actual non-nest (False) 

– 2 Columns: predicted nests (Positive), predicted non-nest (Negative) 

– 4 cells listing number of pixels in following groups 

• Figure 7.7 (pp. 196) 

• Nest is correctly predicted—True Positive(TP) 

• Model can predict nest where there was none—False 
Positive(FP) 

• No-nest is correctly classified--(True Negative)(TN) 

• No-nest is predicted at a nest--(False Negative)(FN) 



Model evaluation…cont 

• Outcomes of classification algorithms are 
typically probabilities 

• Probabilities are converted to class-labels by 
choosing a threshold level b. 

• For example probability > b is “nest” and  
probability < b is “no-nest” 

• TPR is the True Positive Rate, FPR is the False 
Positive Rate 
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Comparing Linear and Spatial 
Regression 

•The further the curve away from the the line TPR=FPR the better 

•SAR provides better predictions than regression model. (Fig. 7.8, pp. 197) 



• Markov Random Field based Bayesian Classifiers 

• Pr(li | X, Li) = Pr(X|li, Li) Pr(li | Li) / Pr (X) 

• Pr(li | Li) can be estimated from training data 

• Li denotes set of labels in the neighborhood of si excluding 
labels at si 

• Pr(X|li, Li) can be estimated using kernel functions 

• Solutions 

• stochastic relaxation [Geman] 

• Iterated conditional modes [Besag] 

• Graph cut [Boykov] 

 
 

MRF Bayesian Classifier 



• SAR can be rewritten as y = (QX)  + Q 

• where Q = (I- W)-1,  a spatial transform. 

• SAR assumes linear separability of classes in transformed feature space 

 

• MRF model may yields better classification accuracies than SAR, 

•  if classes are not linearly separable in transformed space. 

 

• The relationship between SAR and MRF are analogous to the relationship 

between logistic regression and Bayesian classifiers. 

 
 

Comparison (MRF-BC vs. SAR) 



MRF vs. SAR (Summary) 



Learning Objectives 

• Learning Objectives (LO) 
– LO1: Understand the concept of spatial data mining (SDM) 
– LO2 : Learn about patterns explored by SDM 
– LO3: Learn about techniques to find spatial patterns  

• Mapping SDM pattern families to techniques 
• classification techniques 
• Association Rule techniques 
• Clustering techniques 
• Outlier Detection techniques 

• Focus on concepts not procedures! 
• Mapping Sections to learning objectives 

– LO1 - 7.1 
– LO2 -  7.2.4 
– LO3 - 7.3 - 7.6 

 



Techniques  for Association Mining 

• Classical method:  
– Association rule given item-types and transactions 
– assumes spatial data can be decomposed into transactions 
– However, such decomposition may alter spatial patterns 

• New spatial methods 
– Spatial association rules 
– Spatial co-locations  

 

• Note: Association rule or co-location rules are fast filters to reduce the number of pairs for 
rigorous statistical analysis, e.g correlation analysis, cross-K-function for spatial interaction etc. 

 
• Motivating example - next slide 

 

 
 



 

Answers:                           and       

find patterns from the following sample dataset? 

  Associations, Spatial associations, Co-location 



Colocation Rules – Spatial 
Interest Measures 



Association Rules Discovery 

• Association rules has three parts 
– rule: XY or antecedent (X) implies consequent (Y) 
– Support = the number of time a rule shows up in a 

database 
– Confidence = Conditional probability of Y given X 

• Examples 

– Generic - Diaper-beer sell together weekday evenings 
[Walmart] 

– Spatial: 

• (bedrock type = limestone), (soil depth < 50 feet) => (sink 
hole risk = high) 

• support = 20 percent, confidence = 0.8 
• Interpretation: Locations with limestone bedrock and low 

soil depth have high risk of sink hole formation. 



Association Rules: Formal 
Definitions 

• Consider a set of items, 

 

• Consider a set of transactions  
– where each     is a subset of I. 

 

• Support of C 

 

• Then         iff 
– Support: occurs in at least s percent of the 

transactions: 

– Confidence: Atleast c% 
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Apriori Algorithm to mine association 
rules 

• Key challenge 
– Very large search space 
– N item-types => power(2, N) possible associations 

• Key assumption 
– Few associations are support above given threshold 
– Associations with low support are not intresting 

• Key Insight - Monotonicity 
– If an association item set has high support, ten so do all its 

subsets 

• Details 
– Psuedo code on pp. 203 
– Execution trace example - Fig. 7.11 (pp. 203) on next slide 

 



Association Rules:Example 



Spatial Association Rules 

•Spatial Association Rules  

• A special reference spatial feature 

• Transactions are defined around instance of special spatial feature 

• Item-types = spatial predicates 

•Example: Table 7.5 (pp. 204) 



Colocation Rules 

• Motivation 
– Association rules need transactions (subsets of instance of item-types) 

– Spatial data is continuous 

– Decomposing spatial data into transactions may alter patterns 

 

• Co-location Rules  
– For point data in space 

– Does not need transaction, works directly with continuous space 

– Use neighborhood definition and spatial joins 

– “Natural approach” 

 



Colocation Rules 



Participation index  =   min{pr(fi, c)}  

Where pr(fi, c) of feature fi in co-location c  = {f1, f2, …, fk}: 

 = fraction of instances of fi with feature {f1, …, fi-1,  fi+1, …, fk} nearby  

 

N(L) = neighborhood of location L 

 

 

Pr.[ A in N(L) | B at location L ] Pr.[ A in T | B in T ] conditional probability metric 

Neighborhood (N) Transaction (T) collection 

events /Boolean spatial features item-types item-types 

support 

discrete sets 

Association rules Co-location rules 

participation index prevalence measure 

continuous space Underlying  space 

Co-location rules vs. association rules 
 



Learning Objectives 

• Learning Objectives (LO) 
– LO1: Understand the concept of spatial data 

mining (SDM) 

– LO2 : Learn about patterns explored by SDM 

– LO3: Learn about techniques to find spatial 
patterns  
• Mapping SDM pattern families to techniques 

• classification techniques 

• Association Rule techniques 

• Clustering techniques 

• Outlier Detection techniques 

• Focus on concepts not procedures! 

• Mapping Sections to learning objectives 



Idea of Clustering 

• Clustering  
– process of discovering groups in large databases. 

– Spatial view: rows in a database = points in a multi-dimensional space 

– Visualization may reveal interesting groups 

• A diverse family of techniques based on available group descriptions  

• Example: census 2001 
– Attribute based groups 

• Homogeneous groups, e.g. urban core, suburbs, rural  

• Central places or major population centers 

• Hierarchical groups: NE corridor, Metropolitan area, 
major cities, neighborhoods 

• Areas with unusually high population growth/decline  
– Purpose based groups, e.g. segment population by consumer behaviour 

• Data driven grouping with little a priori description of 
groups 

• Many different ways of grouping using age, income, 



Spatial Clustering Example 
• Example data: population density 

– Fig. 7.13 (pp. 207) on next slide 

 

• Grouping Goal - central places 
– identify locations that dominate surroundings,  

– groups are S1 and S2  

 

• Grouping goal - homogeneous areas 
– groups are A1 and A2 

 

• Note: Clustering literature may not identify the grouping goals explicitly. 
– Such clustering methods may be used for purpose based group finding 

 



Spatial Clustering Example 
• Example data: population density 

– Fig. 7.13 (pp. 207) 

 

• Grouping Goal - central places 
– identify locations that dominate surroundings,  

– groups are S1 and S2  

 

• Grouping goal - homogeneous areas 
– groups are A1 and A2 



Spatial Clustering Example 

Figure 7.13 (pp. 206) 



Techniques  for Clustering 

• Categorizing classical methods:  

– Hierarchical methods 

– Partitioning  methods, e.g. K-mean, K-medoid 

– Density based methods 

– Grid based methods 

 

• New spatial methods 

– Comparison with complete spatial random 
processes 

– Neighborhood EM 

 



Algorithmic Ideas in Clustering 

• Hierarchical— 
– All points in one clusters  

– then splits and merges till a stopping criterion is reached 

• Partitional— 
– Start with random central points  

– assign points to nearest central point  

– update the central points 

– Approach with statistical rigor 

• Density 
– Find clusters based on density of regions 

• Grid-based— 
– Quantize the clustering space into finite number of cells  

– use thresholding to pick high density cells 

– merge neighboring cells to form clusters 

 



Learning Objectives 

• Learning Objectives (LO) 
– LO1: Understand the concept of spatial data 

mining (SDM) 

– LO2 : Learn about patterns explored by SDM 

– LO3: Learn about techniques to find spatial 
patterns  
• Mapping SDM pattern families to techniques 

• classification techniques 

• Association Rule techniques 

• Clustering techniques 

• Outlier Detection techniques 

• Focus on concepts not procedures! 

• Mapping Sections to learning objectives 



Idea of  Outliers 

• What is an outlier? 
– Observations inconsistent with rest of the dataset 

– Ex. Point D, L or G in Fig. 7.16(a), pp. 216 

– Techniques for global outliers 

• Statistical tests based on membership in a distribution 
– Pr.[item in population] is low 

• Non-statistical tests based on distance, nearest 
neighbors, convex hull, etc. 

 

• What is a special outliers? 
– Observations inconsistent with their neighborhoods 

– A local instability or discontinuity 

– Ex. Point S in Fig. 7.16(a), pp. 216 

 

• New techniques for spatial outliers  
– Graphical - Variogram cloud, Moran scatterplot 

– Algebraic - Scatterplot, Z(S(x)) 
 



Graphical Test 1- Variogram Cloud 

• Create a variogram by plotting (attribute difference, distance) for each pair of points 

• Select points (e.g. S) common to many outlying pairs, e.g. (P,S), (Q,S) 



Original Data 

Moran Scatter Plot 

 Graphical Test 2- Moran Scatter 
Plot 

• Plot (normalized attribute value, weighted average in the neighborhood) for each location 

•Select points (e.g. P, Q, S) in upper left and lower right quadrant 



Quantitative Test 1 : Scatterplot  

• Plot (normalized attribute value, weighted average in the neighborhood) for each location 

• Fit a linear regression line  

•Select points (e.g. P, Q, S) which are unusually far from the regression line 



Quantitative Test 2 : Z(S(x)) 
Method  
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• Compute    where 

 

•Select points (e.g. S with Z(S(x)) above 3 



 Spatial Outlier Detection: Example 

f

Given 

    A spatial graph G={V,E}  

    A neighbor relationship (K neighbors) 

    An attribute function     : V -> R 

Find 

    O = {vi | vi V, vi is a spatial outlier} 

 

Spatial Outlier Detection Test 

1. Choice of Spatial Statistic 

    S(x) = [f(x)–E y N(x)(f(y))] 

     

2. Test for Outlier Detection 

          | (S(x) - s) / s | >    

 

Rationale: 

Theorem: S(x) is normally distributed 

                     if f(x) is normally distributed 

Color version of Fig. 7.19 pp. 219 

Color version of Fig. 7.21(a) pp. 220 



f(x) 
S(x) 

 Spatial Outlier Detection- Case Study 

Comparing behaviour of spatial outlier (e.g. bad sensor) detexted by a  test with two  neighbors 

Verifying normal distribution of f(x) and S(x) 



Conclusions 

• Patterns are opposite of random 

• Common spatial patterns: location prediction, feature interaction, hot spots,  

• SDM = search for unexpected interesting patterns in large spatial databases 

• Spatial patterns may be discovered using 

– Techniques like classification, associations, clustering and outlier detection 

– New techniques are needed for SDM due to  

• Spatial Auto-correlation 

• Continuity of space 
 


